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PREFACE

*The purpose of this work was to obtain the solution to three

supersonic flow problems using three different numerical

techniques.

First, a shock/boundary layer problem is solved using

MacCormack's explicit technique. Then, using the same technique

a shrouded rocket nozzle problem is solved. These two problems

showed that the explicit scheme required many minutes of computer

time to solve.

In order to explore more efficient codes to solve the shroud

problem, space marching algorithms were studied. A space

marching algorithm using flux-splitting in the streamwise

direction was applied to an approximate form of the Navier-Stokes

equation. Flux-splitting combined with a global iteration

approach should allow the shroud problem to be solved with a

space marching algorithm. The flux-splitting code was applied to

tto supersonic flow problems and very good results were obtained.

This work, of course, is not the result of mk labor alone.

Dr Elrod helped me a great deal on the shroud problem. Major

Hodge showed me how to use the explcit code and familiarized me

with the Cray XMP. Dr Shang, of the Flight Dynamics Lab, has

helped me understand the nuiances of MacCormack's explicit

scheme. Finally, I have to thank my wife, Jackie, for having the

patience to endure my absence from her for these past few months.
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Symbol Definition

A area

a speed of sound

B body force vector

E streamwise flux vector

Htotal energy per unit volume

e internal energy per unit mass

F normal flux vector

Fx total force in x-direction

f force on shroud due to shear stresses

I identity matrix

3 Jacobian of coordinate transformation

k coefficient of thermal conductivity

L reference length

LHS implicit terms of Beam-Warming scheme

M Mach number

m mass flow rate

P pressure vector

Pr Prandtl number

p pressure

[Q] Jacobian of inviscid streamwise flux vector

q heat flux vector

R real gas constant

(R) Jacobian of Inviscid normal flux vector

Re Reynold's number
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Symbol Definition -

RHS explicit terms of Beam-Warming scheme

r common ratio, defined in equation 68

T thrust or temperature

U vector of conserved variables

x streamwise direction coordinate I
y normal direction coordinate

u streamwise velocity

v normal velocity

(W] Jacoblan of viscous normal flux vector

(w] elements of [W] without derivatives

P density

'1 shear stress

£4 viscosity coefficient

Ni '7 ratio of specific heats

dissipation function

safety factor

explicit-implicit weighting factor

Suoerscripts

streamwise marching station

+ positive flux

negative flux

T transpose of a matrix

• non-dimensional

n time step index
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Subscripts Definition

a ambient

b shroud base

inviscid

n nozzle exit

j spatial step Index

0 stagnation or reference condition

s shroud exit

v viscous

h partial derivative with respect to x

partial derivative with respect to x

fpartial derivative wth respect to 

, partial derivative with respect to y

f freestream

L based on reference length

CFL stability condition

Abased on mesh size

• vil
9-'

.9
N I

. . ° . , = o . • • . . , o • . . , , , -. -. , - -o % , -, - % % ". N " % % " . "



Abstract

pIn the present study, solutions to supersonic fluid dynamic

problems using different numerical techniques are given.

First, the full Navier-Stokes equations are implemented in

an explicit scheme to solve a shock/boundary layer interaction

problem and a shrouded rocket nozzle problem. In the shroud

problem, Mach contours, pressure contours, velocity vectors,

shroud wall pressure and base wall pressure were plotted.

Comparison of the base wall pressure with experimental values

were inconclusive. Shroud thrust increment calculations showed

that the shroud only produces thrust gain at ambient pressures

very close to zero. It was also found that a great deal of

N computer time was needed to solve these problems with the

explicit method.

To arrive at a more efficient scheme, an approximation was

made to the full equations. The approximation is valid for

supersonic flows with thin shear layers and also enables a more

efficient scheme to be applied to the equations.

These schemes are called space marching schemes and allow a

solution of a flow without separation in a single sweep of the

flowfield. Problems with separation regions can also be solved,

but a global Iteration process which requires multiple sweeps is
~needed.

Two space marching techniques were explored. The first,

credited to Vigneron, splits the pressure from the streamwise

flux vector. This code was written for single sweep solution of

a flowfield and it was used to solve a subsonic Couette flow and

vill
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a supersonic boundary layer problem. The second code, which is

original to this work, uses flux-splitting on the stxeamwise flux

vector and implements the global iteration technique. The same

two problems solved using Vigneror's technique are solved using

the flux splitting technique and the shock/boundary layer

Interaction problem is also solved.

It was found that Vigneron's technique is more efficient for

solving flows without separation. The flux-splitting code,

however, was found to be about fourteen times faster than the

explicit code when applied to the shock/boundary layer interact-

Ion problem.

An efficiency parameter in the form of CPU time divided by

the number of grid points divided by the number of Iterations was

calculated for each code. For Vigneron's method the value was

4.7 x 10- , for the explicit method the value was 2.2 x 10- and

for the current method the value was 4.6 x 10-4

ix



I. INTRODUCTION

Engineers are continually looking for ways to increase the

efficiency of rocket engines since for every additional pound of

thrust gained another pound of payload can be added or a higher

orbit can be achieved. One way of increasing the thrust is to

increase the effectiveness of the nozzle. Nozzles are designed for

a specific altitude and at any other altitude the nozzle thrust

is not optimum. Deployable nozzles are one method of increasing

the thrust above the design altitude and shrouding the nozzle is

possibly another method.

Figures 1 and 2 show the basic features of shrouded rocket

nozzles. When the flow from the nozzle(s) Is overexpanded the

shroud is ineffective since the exhaust plume will not attach to

the shroud. But, when the flow from the nozzle(s) is

underexpanded the exhaust plume will expand out and attach to the

shroud wall essentially providing a larger exhaust exit area.

There is also the possibility that the shroud will be short

enough so that the expanded flow will not attach to the shroud,

but that case will not be studied here. Allowing the exhaust

plume to further expand so that the exit pressure is closer to

ambient pressure means that the exhaust flow is nearly optimum

and hopefully the thrust is a maximum. However, as will be seen

in Chapter II, many factors affect the thrust of the shroud and

II I.-
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Figure 1 Shrouded Nozzle: Overexpanded

Figure 2 Shrouded Nozzle: Underexpanded

2
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the addition of the shroud may cause a net thrust gain or a net

pthrust loss compared to the unshrouded nozzle.
Goethert (7) was the first to study the effects of shrouded

rocket nozzles. Actually, Goethert used the shroud to eliminate

the problem of nozzle burn through which occured on the clustered

Snozzles of the early Polaris missles. After Goethert, Holmes and

Matz (8) studied the effects of shroud shape, shroud size and

nozzle spacing on the shroud flow field. More recently, Moran (11)

has completed experimental studies with various shroud shapes and

nozzle configurations on both two and three dimensional nozzles.

On the numerical side, Roache and Mueller (13) studied

*" incompressible and compressible flow over backsteps, which is
p

similar to a single shrouded nozzle. Recently, Bardina and

Lombard (3) have applied a three-dimensional split coefficient

implicit code to shrouded multi-nozzles and successfully predict-

ed the characteristic features of the flow.

The primary objective of the present work is to develop

numerical algorithms capable of efficiently simulating predomin-

ately supersonic flowfields, such as shrouded rocket nozzles.

Numerical simulation of the flow inside the shroud will normally

give more detailed information than data obtained from experi-

ment. This information may lead to an accurate understanding of

Athe flow phenomena and consequently the optimum performance of

the shroud can be predicted.

The flow problem inside the shroud of the rocket nozzle Is

formulated using the complete unsteady Navier-Stokes (NS)

equations in terms of the conserved variables. The numerical

3



scheme used to solve this problem is the explicit MacCormack

method (2:479-489).

Results are first obtained for one special case for which

published results are available; this consists of the

shock/boundary layer Interaction problem (4,18). Comparison of

the present results with the available data provides a test of

the validity and correctness of the present analysis and solution

procedure.

Solutions are then obtained for the case of primary interest

in the present study, namely the flow for a single shrouded

nozzle. This model problem corresponds to experiment 3B from

reference 11. The geometric details of the problem are given in

Appendix A.

Upon completion of the shroud problem it was found that the

CPU time required to obtain the solution was excessive. This

results from the nature of the explicit scheme which has a limit-

ation on the time step in order to insure a stable scheme.

Therefore, many iterations and large amounts of computer time

were required to reach a steady-state solution. To remove the

time step restriction, fully implicit methods have been

investigated. The implicit methods, however, still require many

iterations to reach the steady state and consequently, still

require large computational costs.

In an effort to decrease the computational costs associated

with the implicit algorithms, space marching procedures have been

studied. Partial differential equations are classified according

to three types -- elliptic, parabolic and hyperbolic. In

4



elliptic type problems the solution at one point depends on the

solution at all other points in the domain. The problem must

then be solved within a closed domain so that the influence of

all points in the domain is taken into account. In parabolic and

hyperbolic type problems, however, the solution at one point only

depends on the points in a region of the domain. These types of

problems are called marching problems since the solution advances

outward from known initial conditions.

-olutmo avwces outward
~ from 'iMi Coiionls

0 ~ ~ ~ Gune. conditionsdiion

are iwswribed here

Solution domin Io propaation problem ae Procnbad here

N Imlia conditions ea Pwerbd 

I. Figure 3 Solution domain for a marching problem

In the present efforts, two types of marching algorithms are

investigated to solve the steady, approximate Navier-Stokes

equations (ANS). The ANS equations differ from the NS equations

in neglecting the streamwise diffusion terms and the time depen-

dent terms. Now, when the flow is supersonic the ANS equations

are parabolic/hyberbolic in nature, which allows the solution to A

be marched in the streamwise direction. Unlike the parabolic ,9



boundary layer equations, the ANS equations retain the interact-

ion between the viscous and inviscid portions of the flow field

which allows the ANS equations to model elliptic flows.

Since the ANS equations are elliptic when the flow Is

psubsonic, then some method must be found to suppress the

ellipticity so that the equations may be marched. Rubin and Lin

(15), Schiff and Steger (16) and Vigneron, Rakich and Tannehill

(19) have successfully applied such methods. In all of these

methods, the streamwise flux vector was split in a way that

treats the pressure term separately. For example, In the Schiff

and Steger method, the pressure was assumed to be constant in the

viscous subsonic layer and equal to the value from the adjacent

supersonic flow, while Rubin and Lin indicate that setting the

streamwise derivative of the pressure to zero can be a valid

approximation for flows with cold walls. In any case, the error

Is confined to only a thin sublayer adjacent to the wall.

Vigneron, Rakich and Tannehill approximated the streamwise

derivative term with a weighting between Implicit and explicit

differencing that depends on the local Mach number.

The method of Vigneron, Rakich and Tannehill, known as

Vigneron's method, was used to solve two problems. The first

problem is the Couette flow inside a channel and the second

problem is the supersonic laminar flow over a flat plate. Be-

cause the Couette problem Is a fully developed flow, the stream-

wise derivatives are zero and the ANS equations are the exact

equations for the problem. Also, the Couette flow has an exact

analytical solution. The supersonic boundary layer flow has been

6'



solved by Lawerence and Tannehill (10) and provides a more severe

check for the code.

A new approach to spatially marching the ANS equations is

implemented in the present work. In this method, referred to as

the current method, the Van Leer flux-splitting technique (1) is

used to decompose the streamwise flux vector into two flux

vectors which separately model the information traveling upstream

and the information traveling downstream. Such splitting would

appear to be better than the pressure splitting method since it

is more representative of the physics of the flow field and would
assure that the upstream traveling information does not

destabilize the marching algorithm. Solutions are obtained for

the same two problems solved using Vigneron's technique and

both are compared. Also, the solution to the shock/boundary

layer interaction problem is obtained and compared to the solut-

-' ion from the explicit code and the results obtained by

Thomas (18).

Finally, a qualitative comparison between all the methods

is given.

7
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II. THEORY

In this chapter the equations governing the flow problems

are examined. For the shroud problem a simple control volume

analysis will reveal the important properties that affect the

thrust gain of the shroud/nozzle configuration. Next, the

equations to be used in the numerical schemes are presented;

starting with the general form, advancing to the vector form of

the unsteady Navier-Stokes equations and finally arriving at the

approximate Navier-Stokes equations. Then, the flux-splitting

technique used in the current method is discussed. Finally, the

chapter will conclude by presenting the analytical solution to

the Couette flow problem.

SHROUD ANALYSIS

Many important features of this problem can be analyzed by a

simple control volume analysis. Equations for the thrust of the

shroud and the nozzle are derived by using the x-momentum equation

F, =f u, dm (1)

Assuming that the flow properties and ambient conditions are a

constant, then Eq. 1 can be applied to the control volume (CV)

shown In figure 4 to give

Ts = mu, * (p, - ps) As
(2)

8
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I I_!h

Figure 4 First shroud control volume
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Figure 5 Second shroud control volume
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This Is the familiar rocket thrust equation. Now, by applying

5 Eq. ito the CV shown in figure 5, another equation for the thrust Iof the shroud can be obtained

T. = mUm - (Pb - P.)Ab ( (p. - ps)AD - f(3)

Recognizing that the thrust of the nozzle alone is given by

T3 = mu , (ps - p.) An (4)

then Eq 3 can be rewritten as

AT = T.-T. = (Pb- p.) Ab - f (5)

Eq 5 shows the importance of the shroud base pressure in in-

creasing the thrust of the nozzle. If the shroud base pressure

force Is higher than the ambient pressure force plus the shear

force, then the thrust increment is positive; otherwise the

thrust Increment is zero or negative.

The integral analysis given above can only give information

on the gross properties of the flow, such as the thrust. For a

more detailed analysis, however, the equations of motion

expressing the conservation of mass, momentum and energy are

required in the differential form. In generalized coordinates

10
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the conservation of mass equation is

O/OL + V. (PV) =0 (6)

The conservation of linear momentum equation Is

,p(DV/D) = -Vp V.pB (7)

The conservation of energy equation is

p(De/Dt) - -p(V.V) -.- . - V q (8)

where is the dissipation function and is given by

(9)
* = (V V)

In order to complete this set of equations the pressure,

the stress tensor and the heat conduction vector must be related

to the other variables. Only perfect gases will be considered

here and thus the following equation of state will be used

p =pRT (10)

(10)

where R is the universal gas constant. Since only Newtonian

fluids will be studied, Stoke's law of friction can be used

to relate the shear stress tensor to the gradient of the velocity 0

vector as

. *1

11, ... . . . o . , ,



=V V I [ VV (Vv)T ] (11)

Finally, the heat flux vector is related to the gradient of the

temperature through Fourier's law of heat conduction

q = - kVT (12)

where the conductivity, k, is a function of the temperature.

For numerical solution these equations can be expressed in

vector form in cartesian coordinates. Also, to simplify the

finite difference algorithms for problems requiring complex

grids, the equations are w~itton in terms of a computational

space. Eq 6 through Eq 12 are then written as

O/OUU/J) O/OJ-,,(-E, ",-F,)

+ q F v 0 (13 ) "

pup

U PyJ (14)

12
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'T,, = (213)l4Z( 1u~vu .,)-(t,.v .iv,,,]

(20)

= -k (tTt ,Tq 1

q, = -k QyTt iTq) (21)

For most high Reynold's number flows solved by finite
.r,

• . differences, an approximate form of the Navier-Stokes equations

(ANS) can be solved. The ANS equations to be used are sometimes

Incorrectly called the "parabolized" Navier-Stokes equations

although they are actually parabolic/hyperbolic. The ANS equat-

ions are derived from the NS equations with the following reason-

ing. The grid densities allowed by computer memory and cost

limitations usually only allow the viscous terms to be accurately

resolved In one coordinate direction. The viscous terms in the

direction normal to a surface are needed for such quantities as

shear forces and energy transfer rates. The streamwise viscous

terms, then, are not accurately resolved even when the NS equat-

ions are solved. The ANS equations are arrived at by simply

neglecting the streamwise viscous terms and the time dependent

terms of the full Navier-Stokes equations written in Cartesian

coordinates and can be expressed as

14
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61% Ox 8 / ly' aF,/lay 0 (22)

E, AOUS2 p(23)

4 S

4/3 0 U/Of (24)

JJ
ReL u=Re pcuiL/, (24/3 d~loy (25U*Cl*/Oy -4/3)~ov/Oy*[(71)MjPrr OT*clI
L.

Wher th Reyolds nuberIs dfind b

Re plufL/A -(26
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and the equation of state Is now

P =-'T*/,YM (27)

4The variables are non-dimensionalized as follows

= u/u, "= V/u = ,/L

y= y/L es= //ps 6"= lu,
(28)

p = p/Pu' P = P/; T = T/T,

* = 8a/Ui

In many problems the viscous/inviscid regions Interact and

to capture this interaction with the fewest number of grId

points, stretching must be applied In the normal direction. To

facilitate this stretching, the equations are written in

computational coordinates with only the normal coordinate

transformed. The ANS equations can be easily modified for these

6., coordinates as follows. The normal direction in computational

coordinates will be designated as eta. The normal direction

derivative in physical space can then be written in terms of the

normal direction derivative in computational space

=/Y NOof /On
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substitiuting into Eq 22 yields

dividing by yj. gives

11,.1 OlOx' I - o l = o (29)

where

10 J (30)
L u*/oi (4/8)v'v'/Ot [(7-)M,'Prr' :-'yI

These equations are used in the current method.

Flux Splitting

Since the streamwise flux vector of the ANS equations only

contains inviscid terms, then this vector may be "split" into two

flux vectors. One flux vector, called the plus flux vector,

models information propagation downstream. The negative flux

vector models information propagation upstream.

Starting with the derivative of the streamwise flux vector

17
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This can be written as

*IQ ( oIo,"

where

[Q1 = o'IOU (31)

NowE" has the property (2:282)

= Q]U* (32)

A similarity transformation also exits so that (2:281)

IL] [(Q [R] = IX] (33)

where

[L] = matrix of left eigenvectors,

[R] = matrix of right eigenvectors,

[] = matrix of eigenvalues

The eigenvalue matrix can be split into two parts. One part

contains the positive eigenvalues and the other part contains the

negative eigenvalues. This is written as

= { [ (34)

Substituting Eq 34 into Eq 33

18
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(LI [(Q [R] [ [

Solving for (Q

[Q] = [L]-' (X]* [R]" - (L-' I- (R-'

(35)

The streamwise flux vector can then be written

E~[Qr+U'. us
-'-(36)

The exact elements of E+andB -* may differ. The form used in

- this work was derived by Van Leer and is given by

"= L .,,, i-)u'.,-2a']/*9 1)J + y ~J(37)

where

= .- p[(l11 (M.,-1 (38)

19
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When the streamwise Mach number is greater than or equal to

one then

and when the streamwise Mach number Is less than or equal to

negative one then

When combined with the proper finite difference

approximations, flux splitting provides a realistic model of the

physics of a flow. Hj+* models the Information propagation In the

downstream direction and E'models the Information propagation in

the upstream direction. Appropriate finite differences, then

will take the correct information propagation Into account when

approximating the derivatives ofk °and E-° For the~'Ef

derivative a backward difference would be used and for the E-

derivative a forward difference would be used. An example of a

IS
backward difference is

a,..

and an example of a forward difference Is

(OU/0xu C [ui.U-uJ/xa
;.

This splitting method will be applied to the current method

described in Chapter III. P

20



Couette Flow solution

N A Couette flow is an Incompressible flow which consists of a

stationary lower plate and a moving upper plate with a fluid

between the plates. For the purposes of this work the fluid is

air and the flow is considered two-dimensional and fully

developed. With these assumptions the x-momentum equation

of the NS or ANS equations reduces to

dsu*/dy" = 0

With the boundary conditions

u'(y=--O) = - u0(y') : 1

the solution is

=*Y Y" (39) i.

The energy equation is

(du/dyfr -" [(7-1)Mf'Prr' (dTV/dy') = 0

and the boundary condtions are *

Tly=IO) I ;T,(y=I) I

21
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Substituting Eq 39 Into the energy equation and applying the

boundary conditions gives the solution

'(Y)= LO - [(7-1)MfPrl/2) (Iy" - y)(
(40)

22"
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III. Numerical Solution Methods

The important concepts of solving the governing equations

using finite difference methods are discussed in this chapter.

First, the governing equations are examined carefully with the

aim of selecting an efficient numerical scheme for their

solution. Thereafter, the finite difference form of the

equations is presented, together with the initialization used for

all variables. The procedure for solving the resulting algebraic

simultaneous equations is described and some details about the

implementation of the boundary conditions are discussed.

Inherently, the governing equations are an extremely stiff,

non-linear system of equations and therefore their numerical

solution deserves special care. The most widespread method of

solution is the use of finite difference discretization. Simply

put, the finite difference method converts partial differential

equations (PDE) into a system of algebraic equations. These

equations are then written at the discretized grid points used to

approximate the flow domain. The system of equations can then be

solved explicitly or implicitly.

In an explicit scheme the finite difference form of the

differential equation is written so that only one unknown appears

in the equation. For example, the heat equation

,./ =K &'ulCx'

(41)
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An explicit formulation is

'- ul/= (a/(Ax') [u, - u,+ ] (42)

where n is the time index and J is the space index. Because an

initial condition must be specified, then the values at n will

always be known. Only one unknown, uj" , appears in the equation.

Explicit methods are generally easy to code, but require very

small time steps to satisfy stability restrictions. Therefore,

many iterations and large computer times are required to reach a

steady-state solution. This can be a severe problem

when very fine grids must be used to capture flow details.

An implicit finite difference equation for the heat equation

could be written by evaluating the terms on the right hand side

of Eq 42 at the n+1 time level. The implicit schemes, then

- require the simultaneous solution of several equations. For a

linear system of equations implicit methods are unconditionally

stable. However, to be able to solve the discretized form of the

governing equations implicitly, they must first be linearized.

This leads to a matrix system of equations which can be solved to

obtain the variables at each grid point, but the method is no

longer unconditionally stable. The maximum time step is much

larger than allowed for the explicit methods so that fewer

iterations and lower computer times are required. Also, the

explicit methods may fail for problems having very steep grad-

ients so the only choice is to use an implicit method.

24
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MacCormack's ci Method

The explicit method used in this work is a two-dimensional

version of MacCormack's predictor-corrector scheme(2:479-489).

This scheme was chosen because it was readily available and had

been successfully used in earlier AFIT studies(14). The

empirical stability constraint on this scheme is given in

cartesian coordinates by (2:484)

i& f(At)J(,.2/!)

where sigma is approximately 0.9 and (AL)oL Is the inviscid CFL

condition given by (2:484)

(Oo,, < [I YV & july 7 (44)

The particular code used in this study was obtained

from the Computational Aerodynamics Group, Flight Dynamics Lab,

Wright-Patterson Air Force Base. The code has been vectorized

for the Cray XMP supercomputer and contains a Baldwin-Lomax

arithmetic turbulence model, although all the problems considered

here will be laminar. The explicit code discretizes the dimen-

sional form of the uns' ady NS equations in computational

coordinates with all variables in English units. For more

details on MacCormack's explicit scheme see reference 2 and for

the details on the code see reference 14.
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SpAce Marchnlg Algorithms

*The first method follows the method used by Vigneron to

solve the ANS equations using a space marching scheme. This

allows the solution of a predominately supersonic flow to be

obtained with a single sweep of the problem domain. In the

subsonic portions of the domain Information traveling upstream

must be suppressed, and Vigneron achieved this by "splitting" the

streamwise pressure gradient from the streamwise flux vector. Eq

22 would then be I
.. */Ox OP*/O' * / - OF,=/Oy 0 (45)

where

~~a a

PlV (46)

and L j (,,,
and

P4 (47)

06

Vigneron's stablility analysis showed that for the solution

to be marched in the streamwise direction omega must satisfy

< ,7M3s/1 (7-1)Mz] (48)
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For computational purposes a safety factor is applied to Eq 48

S"M, (v-114M, (49)

where sigma is usually 0.9. The Beam-Warming finite difference

equation in given by

AI-R "/01 (.&I) XO/Ox (V) (50)

where

A Ila '-E (51) 'I

This is the Euler implicit form which is first order accurate in

the marching (streamwise) direction and second order accurate in

the normal direction. When Eq 50 is applied to Eq 45 the stream-

wise pressure gradient term Is treated as an explicit term and

taken to the right hand side (RHS). This term is then backward

differenced to retain the space marching technique. However,

when this is done the streamwise step size must meet the

stability requirement

(AX).) > ((1/4Xpu/pCI(/M 1,) - 1]Ay/(ysinV/2)) (52)

where p is the wave number. This requirement can be a severe
restriction for low-speed flows. This restriction can be removed
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using two methods -- neglecting the streamwise pressure gradient

term and specifying the pressure field. Neglecting the stream-

wise pressure gradient is an obvious way to remove the restric-

tion, but the method must then be used only for flows with small

or no streamwise pressure gradient. Specifying the pressure

field allows the streamwise pressure gradient term to be forward

differenced and again removes the stability restriction.

However, if the pressure field is not exactly known, then the

- method must be modified for global iterations where the field is

swept until the correct solution is reached. This diminishes the

attractiveness of the single-sweep marching technique, but only a

few sweeps are usually required. The code developed for the

present work using Vigneron's method will be referred to as PANS.

Vigneron's method closely follows the current method except that

the PANS code is a single sweep code while the current method is

written for global iterations.

The goal here is to develop a method which can successfully

be applied to large separation regions. Because the flux-split-

ting correctly models the characteristic propagation of informat-

ion in both subsonic and supersonic flows it would be a better

candidate for a successful method. However, to correctly apply

the flux-splitting a forward difference must be applied to the

negative flux term. This means that the marching scheme must be

modified for global iterations since the forward difference

requires data that has not been calculated. To solve this

problem the negative flux term will be calculated using "old"

data, that is, data obtained from the previous solution sweep.

28
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The derivation of the current algorithm follows that given for

Vigneron's method in reference 2. Putting Eq 22 into delta form and

substituting Into Eq 50 gives

A'I= -x[OOy'(A' YA - &xjEO/Oy* (F1s' -F)](53)

From Eq 36 the following equation can be written

Substituting Eq 36 into Eq 53 results In

* '~ &LO~ A''-A'?']-AFVO F' e) (54)

This equation is linearized according to

AF* [WJ'A'U* (56)

whereI

(R]' (OPj1 OU' (57)
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[Wj' = (aFO/OU7) (58)

According to the flux-splitting method the positive streamwise flux

vector for subsonic streamwise Hach number is written

a(59)

and when the streamwise mach number Is supersonic

E+=h'E' ~ [Q]'AU' (60 )

The elements of [e], [(Q , [RI and [V] are given in Appendix B.

Now Eq 54 becomes

[Qr'A'U" A'Ej', = -"x&[/Oy([R]'"'U" - [W]A!Uj] (61)

-do/'y" (Fi - IP,]

-." Taking the implicit terms to the left-hand-side (LHS) and the

explicit terms to the right-hand-side (RHS) results In

[Qr'A&'U' AO/dy g~j.&'U* - [WIA'U)J62
(62)

= -,&x'OOy" (Fe' - F,')] - ,'-

The first partial derivatives are approximated by second order

central differences, for example

30
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P/ i' l]'' ('A'U'i., - .]',@.U.,)/(2Ay'j (63) ]

and for the second derivative terms

./ y ' I " (wa'u,] (ps , " ., ( ]
-~ IAi~.iIv'iJ W *'wA'ijjf2an

This gives the LHS a block tri-diagonal structure whose elements are

given in Appendix C. The negative split-flux vector on the RHS

Is evaluated using a first order forward difference I
i- (65)

The viscosity coefficients were evaluated using Sutherland's law

app$4-T1 (66)

The current code, referred to as FANS, is carried out as follows:

Step 1: Specify the Initial conditions for the whole

31
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flowfield. For the PANS code only the

conditions at 1=1 need to be specified.

Step 2: Calculate E-*for the whole flowfield. Skip this step

for the PANS code.

Step 3: Calculate the streamwise Mach number and the viscosity

coefficient for each J (normal) point at the I

station. For the PANS code calculate

omega instead of the streamwise Mach number.

Step 4: Calculate the Fj* vector for each J at I

Step 5: Calculate the derivative of Fi* with respect to y for

each J at I

Step 6: Calculate the derivative of F.* with respect to y for
each J at I
each 

J atI

Step 7: Calculate the RHS vectors for each J

Step 8: Calculate the linearization Jacoblans. For the FANS

code if the local streamwise Mach number is

less than one then calculate [QJ' instead of [Q]

Step 9: Calculate the LHS matrices

Step 10: Solve for delta-U at I+1 using the block tri-

diagonal matrix solver

Step 11: Update the solution using

U *  ' = U * U* 

i

Step 12: Calculate the explicit boundary conditions

Step 13: Repeat Steps 3 through 12 until the solution for the

last streamwise station is obtained. The first sweep

of the flowfield is finished and the PANS

32



code stops here

Step 14: Go to Step 2 and repeat the process until the

solution has converged.

Please note that the PANS code is not written in

Rcomputational coordinates. Therefore, a grid does not need to be

generated; simply specify the streamwise step size, the number of

points in the streamwise direction, the normal step size and the

number of points in the normal directibn. The FANS code does,

however, require a grid to be generated for the normal coordin- Ii
ate.01

Although both codes were run on the Cray XMP, no effort was

made to vectorize the codes. In fact, vectorization was not

implemented during the compilation of the codes.

1-
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IV Results and Discussion

In this chapter each problem that was solved will be briefly

discussed. The problems are the following:

- Shock/Boundary Layer Interaction (explicit)

- Single Nozzle in a Short Shroud (explicit).

- Couette Flow (PANS, FANS)

- Supersonic Boundary Layer (PANS, FANS)

- Shock/Boundary Layer Interaction (PANS)

A brief description of each problem will be followed by the

results and finally a discussion of the signifigance of the

* results.

Shock/Boundary Layer Interaction (explicit)

This problem consists of a shock wave impinging on the

- boundary layer over a flat plate as shown in figure 6. The

results obtained here will be compared to the results of Thomas

and Walters(18) and also the results of Beam and Warming(4).

The computational grid, shown in figure 7, is the same as

used by Beam and Warming but the upper boundary was increased to

allow the leading edge shock to exit through the downstream

boundary resulting in a 32x62 cartesian grid. The boundary

conditions for the supersonic inflow were freestream up to the

point where the shock entered the domain and then the inviscid

shock Jump conditions from that point to the top of the domain.

The conditions along the top of the domain were also set to the

shock Jump conditions and along the outflow boundaries the

34
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conditions were extrapolated from values of interior points.

Along the bottom of the domain symmetry conditions were used

before the leading edge of the plate and on the plate no-slip

and constant wall temperature conditions were applied. The wall

temperature was set to the free-stream temperature of 460

Rankine.

Fiqure 8 shows the pressure contours, Figure 9 shows the

pressure along the bottom of the domain and Figure 10 shows the

friction coefficient along the plate. The results agree well

with the solution obtained by Beam and Warming (4). However, a few

problems should be pointed out. First, a large amount of damping

was necessary to achieve a smooth solution. Next, as shown by

Thomas and Walters (18), a grid density of 60x90 points is necessary

to accurately resolve the separation region. The grid used by

the explicit code was 32x62 points and required 22,000 iterations

with a run time of 968 seconds on the Cray XMP. The efficiency

parameter, CPU time in seconds divided by the number of grid

points divided by the number of iterations, was 22 x 10 . Only

one streamwise station exhibited the negative streamwise velocity I
characteristic of the separation region. Finally, the separation

region of the flow was very slow in developing which reveals

another weakness of the explicit code -- slow convergence of the
~solution In subsonic regions.

Single Nozzle in a Short Shroud

The problem to be solved now is the two-dimensional single

nozzle in a short shroud, experiment 3B from reference 11.
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the explicit code
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This is a cold air flow where a chamber was pressurized to 13680

pounds per square foot (psf) and the exhaust chamber was

evacuated to about 36 psf. The pressure chamber exhausted into

the test section where the nozzle block and shroud block were

located. The exhaust chamber pressure would gradually increase

during the experiment resulting in an unsteady flow where the

nozzle exhaust plume would eventually separate from the shroud

wall. The nozzle had a 4:1 exit area to throat area with an

isentropic exit Mach number of 2.94. More detatils on the

dimensions are given in Appendix A. For this numerical solution

the exhaust chamber pressure will be assumed to be a steady 36

* psf so that a steady solution with the exhaust plume attached to

the shroud wall can be computed.

In order to keep the cost and computer time to a minimum the

number of grid points and the location of the grid points in the

domain must be carefully selected. The flow domain was chosen to

be a two-dimensional cartesian coordinate system with x

representing the streamwise direction and y the normal direction.

The reference length was chosen to be the length of the shroud --

two inches. Because of the large separation region in this flow

a 45x45 grid was chosen as the best trade-off between run time

and accuracy. To improve the accuracy of the results the grid

points were clustered around high gradient regions and regions of

interest. In this case, the high gradient region was near the

exit of the nozzle and the base wall was the region of interest

since this is where the pressures from the experiment were taken.

After about five short computer runs the grid in Figure 11 was

41
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chosen as the best for the problem.

Next, the boundary conditions will be discussed. There are

five important regions where boundary conditions must be applied

in this problem -- the shroud wall, the base wall, the nozzle

exit, the symmetry line and the shroud exit. For both the shroud

wall and the base wall no-slip and constant wall temperature condit-

ions were used; to calculate the density at the wall the

normal gradient of the pressure was assumed to be zero. The nozzle

exit (shroud inlet) conditions were taken to be the exit condit-

ions for an isentropic quasi-one-dimensional nozzle with stagnat-

ion conditions equal to the conditions in the pressure chamber of

the experiment. In order to increase the grid density the flow

was assumed to be symmetrical about the centerline of the shroud

so that the upper boundary of the domain is a symmetry line.

Symmety line conditions were set to be zero gradient except for

the normal velocity component which was set to zero. Finally,

since the shroud exit is a predominately supersonic flow then the

shroud exit conditions can be calculated from interior points by

simple extrapolation.

To arrive at realistic initial conditions the problem

must be thought of as an unsteady problem which reaches a steady-

state solution. The initial conditions would then be that of

the exhaust chamber before the pressure chamber valve was

released, which were taken to be the following:

po = 36 psf I
00

Uo = 0.0 ft/sec

Yo = 0.0 ft/sec
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To = 460 Rankine

*= 0.000045553 slugs/cu ft

except at the nozzle exit.

The results of the shroud computations are presented in

Figures 12 through 16. The Mach contour plot (Figure 12),

pressure contour plot (Figure 13) and velocity vector plot

(Figure 14) reveal the important features of the flow. The Mach

contour plot shows the expansion of the nozzle plume from a

nozzle exit Mach number of approximately three to a shroud exit

Mach number of approximately five and a half. Somewhat harder to

see is the compression shock formed when the exhaust plume

strikes the shroud wall. This feature is located in the lower

right hand corner of the plot and shows a drop in Mach number

from 5.5 to 2.5 across the shock.

Details of the seperation region are also revealed in the

Mach contour plot. This region has a very complex flow pattern

containing many eddies and a surprisingly wide range of Mach

contours. For instance, embedded in the predominately subsonic

* separation region is a supersonic region. This region stretches from

the plume/wall interaction area towards the shroud base. This
0

phenomenon also shows up in the velocity vector plot. Here, the

arrows close to the plume/shroud interaction region are seen to

point towards the shroud base. Moving closer to the base, the

arrows gradually lengthen, indicating a fluid velocity increase,

until the flow turns parrallel to wall and the velocity

decreases. JmI

Both the velocity vector plot and the pressure contour plot
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where w Is the width of the shroud which was two Inches. The

ambient pressure is a constant and is taken to be thirty six

pounds per square foot. The change in thrust is found to be a

loss of 0.5 pounds force from a nozzle thrust of 14.7 pounds

force. This is a 3.7 percent loss. If the ambient pressure is

"* chosen to be zero, however, a thrust gain of 0.4 pounds force is

calculated, which is a 2.2 percent gain. Thus, only under

certain ambient conditions does the shroud increase the thrust

over the nozzle alone.

The run time on the Cray XMP for eighty thousand time steps

was 2373 seconds. The efficiency parameter is then 1.4 x 10-  •

Couette Flow

The Couette flow problem has been used previously as a model

problem to test codes (4,18). A Couette flow consists of a

stationary lower plate and a moving upper plate with a fluid

between the plates. For the purposes of this work the fluid is

air and the flow is considered two-dimensional and steady state.

The characteristic length is the distance between the plates. The

exact solution to this problem for an incompressible flow is, for

the velocity distribution given by Eq 39 and for the temperature

distribution is given by Eq 40. The pressure and the coefficient

of viscosity were assumed constant and the density Is calculated

from the equation of state.

Figure 17 shows the results from the PANS and FANS codes for

the Couette flow problem. Both codes are in very good agreement

with the exact solution. Besides providing a dry run for the
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codes, this exercise also demonstrated one very important point.

In both codes the flow fields were initialized so that forward

differences could be used on the "split" terms and, as mentioned

earlier, this should relax the step size restriction. Eq 49

applied to this problem yields

(&x). > 1.6

The step size used, however, was

In short, initializing the flow field and using forward

S..differences on the split terms significantly reduces the size of

the streamwise step size.

Supersonic Boundary Laver

As a second, more severe test for the PANS and FANS codes

the supersonic, laminar boundary layer flow previously worked by

Lawrence and Tannehill (10) will be solved.

This is a flat plate, zero pressure gradient flow. The

freestream conditions were the following:

M,2.0

T= 399.0 Rankine

Rft = 1.65 1

The characteristic length was taken to be one meter measured from
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the leading edge of the plate.
"*

The flow was initialized at x = 0.305 using data from the

boundary layer code of Cebeci (6). The initial data was then

marched to X 0.915 and compared to data at the same location

from Cebeci's code. Step sizes used were AX' = 0.001 and A =

01524xi 0 with six hundred and twelve grid points in the x-

direction and forty grid points in the y-direction.

Figure 18 presents the tangential velocity profile computed

with a single sweep of the PANS and FANS codes compared to the

boundary layer code. Figure 19 presents the temperature profile.

Clearly, the PANS code provides a more accurate solution than the

FANS code for a single sweep. This is expected, since for

a single sweep the pressure vector was set to zero in the PANS

code and the negative flux vector was set to zero in the FANS

code. Thus, the PANS code only neglects a portion of the

upstream traveling information, but the FANS code completely

eliminates this information.

Next, the FANS code was applied to the same problem, but

using global iterations. Figures 20 and 21 compare the FANS code

run for four sweeps to the PANS code run for one sweep and the

boundary layer code. Now that the minus flux term has been

included In the FANS code, the solution is just as accurate as

the PANS solution.

An indication of the relative computer effort required by

the two codes is given by a comparison of CPU times. The figure

of merit here is the CPU time in seconds divided by the number of

sweeps divided by the number of grid points. For the FANS code
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Figure 18 Boundary Layer: Velocity profile (one sweep)
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Figure 20 Boundary Layer: Velocity profile (four sweeps)
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Figure 21 Boundary Layer: Temperature profile (four sweeps)
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this was 4.6 x 10-4  and for the PANS code 4.7 x IV •

Shock/Boundary Layer Interaction (PANS)

As another test the FANS code was applied to the

shock/boundary layer interaction problem previously solved using

the explicit code.

To keep the number of grid points to a minumum stretching

in the normal direction was used. The stretching was determined

using a geometric progression (5:8)

A= Ayj rm_(68

where r is called the common ratio. It was found that the

algorithm could not handle a large amount of stretching. The

maximum value of the common ratio was found to be approximately

1.05. By specifying the location of the outer boundary and the

number of points in the normal direction, the minimum y step size

could be calculated from

= y3 l-r)/(1 - r (69)

Using the same domain size used by Beam and Warming gives

&Y mia = 2.909 x 10-

With a grid using four hundred and eighty five points In the I
streamwise direction and one hundred and one points in the normal
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direction, solution accuracy would be of the same order as Beam

and Warming's solution.

Figures 22 and 23 present the results of the computation.

As can be seen in figure 22, the pressure contour plot, the code

did an excellent Job of capturing the leading edge shock, the

impinging shock and the reflected shock.

For comparison the results of the explicit code and Thomas'

results have been plotted on figure 23. Here, there is quite a

' difference. The region over which the pressure rises from before

the shock interaction to after the shock interaction is smaller

in the FANS results. There is also a "hump" in the FANS

pressure and a smaller hump in Thomas' data, but the explcit

pressure curve levels out. Both of these differences are attri-

butable to the damping in each code. The explicit code contains

artificial damping terms and Thomas' code contains damping which

0. results from the upwind differences, but the FANS code does not

contain added damping. This means that the FANS code will cap-

ture the shocks with less smearing, but overshoots, as seen in

>*. the pressure hump, may occur.

The code took sixty eight seconds and three global sweeps to

solve the problem on the Cray XMP. This gives an efficiency

parameter of 4.5 z 1O-  . Compared to the results for the same

& problem for the explicit code, the FANS code Is 14 times faster.

The efficiency parameter, however, is about an order of magnitude

larger which is to be expected since the FANS code was not

vectorized.
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Appendix A: Dimensions of the Shroud

U
The shroud used In this work is a model of nozzle block 3B

used In the experiments conducted by Moran (11). The block

-" consisted of a single converging-diverging, two-dimensional

nozzle cut out of aluminum. The sides of the shroud were formed

from plexiglass and the top and bottom wall of the shroud was

made from removable wood blocks. The figure on this page

shows the shroud dimensions and the drawing on the next page

the original nozzle design.

"2"
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Appendix B: Jacoblans

In this appendix the elements of the Jacoblans defined by

Eqs 55, 56, 59 and 60 are presented. These Jacoblans are the

"-" partial derivative of a vector with respect to a vector and are

therefore matrices. Each element will be denoted by the symbol

given to the corresponding Jacoblan. Subscripts on the symbols

denote the row and column of the element.

For the (01 matrix:

Q=0

.

QU = ('-i

Q. = 0

%Q2

=U - *V*

U.,
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9 44 7u

For the [Q*- matrix the following are defined:

c= (O OU3) = [7(7-13/2&1) [-(Esp') (U"4-Y')/A

C= (O./OU,3) = [7(7-1)/2&1 [-um/p3)

CS O0 = = 7(7-0/291) [-v'/p']

B4 = [71/yu

the elements are

Qm-(1/4) ((2u/s3)-u'/&)c,.*2-.c]
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=(1/4) [pS-(p u"0/a)Jog

Q4 + = (1/4) (p-(P*U'"/&)C4

W= BQU* (Eir/P) [-(7-1)u'/P * 2c,]

Q~*= BW (E*,) [(7-1X/p) 2c2]

Qj*= B 4. 2/70

Q2*= BQ14 * (WE/7)0 4

Q34=

=4 Qn0 D .E ll-[( 7-1ru/p 4*2( 7 -1)u.),( 7 1upI/91 N./.

Qa~ = QuD 81&ac-s (7-1)?. sy0 7-1)uc V*1)p/jJ(.-)

U9"+ Q,4*D. Ea*([4ac -,2(7)UC]/(71) 4 a/.

For the elements of the CR] matrix
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=4 =0

R,2 = ((7-0."{.-s)v'/2

R,

"R"

X.= (3-7),"

RM " u-s

"" ~R,1 = [--71E'/,oH).7 X2.-,"I "

= -(7-lu'y"

R.= ('/.)- (7-lXu"-..-8v"/2

For the elements of the IV matrfix

wun=0

Wm=o

WRO

W14 =0
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m.mr~t~tn LWsl wfl. USR Vwl W.Lflw7 VIV UVrwrW -L-w''wWVIWU V 7W tr w V w Swv M sing.

wu= -#&/Re O(/)

Wa= p/Re [ 1 1p)

W24 = 0

Wa= -(4/3(pIRe) d,(i/p')

W"= (4/3S&/Re) O,(11p')

WU4 = 0

W41 = 5&/Re (OgU2/p' 430('/)-(/rOUpf71p]-[u'.v/j'J

WU (p/RoXI-7/Pr) Ogu*/po)

W" (p/ReX4/3 - 7/Pr) O,(v'/pl

W4 (&/ReX7/Pr) 01 (1/p3
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Appendix C: Block Tri-diagonal Matrix Elements

When the derivative approximations of Eqs 63 and 64 are

applied to the left-hand-side of Eq 62, a block trl-diagonal

matrix results. A block tri-diagonal matrix Is a matrix which

has only three bands of non-zero block elements. These bands

consist of the diagonal, sub-diagonal and supra-diagonal block

elements. Each block element is a matrix which, in this case,

are four row by four column matrices. Now, let (A] be a diagonal

block element, (B) a sub-diagonal block element and (C] a

supra-diagonal block element. The elements are then given by

[A = [Q]1' (('/,Ry')') (5i( 8 . 1].i.. ')] [w]

[B]1 = -[(Ax/2& yI R_] ,-s (us/2Re.Ay -_

[C]i = (ai/2ay8 IRL1 - (ax/2Re(&?X4i4yw.
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Block 19

The purpose of this work was to obtain the solution to three
supersonic flow problems using three different numerical techniques.

First, a shock/boundary layer problem is solved using
MacCormack's explicit technique. Then, using the same technique
a shrouded rocket nozzle problem is solved. These two problems
showed that the explicit scheme required many minutes of computer
time to solve.

In order to explore more efficient codes to solve the shroud --
problem, space marching algorithms were studied. A space
marching algorithm using flux-splitting in the streamwise
direction was applied to an approximate form of the Navier-Stokes
equation. Flux-splitting combined with a global iteration
approach should allow the shroud problem to be solved with a
space marching algorithm. The flux-splitting code was applied to
two supersonic flow problems and very good results were obtained. -
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